Преобразования распределения

Функция преобразования преобразователя вакуума задается в виде градуировочной кривой. Отклонение действительной функции преобразования отдельного преобразователя от усредненной составляет 10. ..20%. При индивидуальной градуировке погрешность градуировки может быть уменьшена до 1...3%. Однако с течением времени градуи-ровочные кривые могут существенно изменяться вследствие изменения параметров нити, что вынуждает производить частые поверки термопреобразователей.

Холла питаются от одного и того же источника, исключается погрешность от нестабильности напряжения и частоты источника питания. В приборе предусмотрена коррекция погрешностей от нелинейности функции преобразования преобразователя Холла. По приведенной схеме выполнен измеритель магнитной индукции Ш1-8, предназначенный для измерений индукции постоянных магнитных полей в диапазоне от 0,01 до 1,6 Тл. Основная погрешность прибора не превышает ±2 %.

принято определять равным половине полосы неоднозначности функции преобразования преобразователя при малых значениях входной величины. Так, например, для реостатного преобразователя неоднозначность заключается в том, что одно и то же его сопротивление R соответствует целому ряду значений входной величины / до тех пор, пока ее прирост не превзойдет толщины одного витка проволоки реостата и движок не перейдет окончательно с одного витка на другой. Поэтому, если на длине 20 мм у реостатного преобразователя намотано 200 витков, то ширина полосы неоднозначности равна 0,1 мм, а порог чувствительности составляет + 0,05 мм. Очевидно, что, добавляя к данному преобразователю другой, предварительный, преобразователь (например, рычажную передачу, редуктор, делитель напряжения для электрических преобразователей и т. д.), естественный предел измерения Хн данного- преобразователя можно изменить и согласовать с пределом изменения измеряемой величины. При этом в то же число раз изменится и порог чувствительности преобразователя А0. Кроме того, у ряда преобразователей можно перемещать абсолютные значения Л„ и Хн вдоль шкалы измеряемой величины простым изменением конструктивных параметров. Так, например, изменяя число витков рамки или сопротивление шунта, можно легко построить магнитоэлектрический прибор и на 100 мка, и на 100 ма. Однако при этом отношение предела к порогу останется примерно постоянным. Поэтому наиболее характерным показателем качества измерительного преобразователя является отношение

Холла питаются от одного и того же источника, исключается погрешность от нестабильности напряжения и частоты источника питания. В приборе предусмотрена коррекция погрешностей от нелинейности функции преобразования преобразователя Холла. По приведенной схеме выполнен измеритель магнитной индукции Ш1-8, предназначенный для измерений индукции постоянных магнитных полей в диапазоне от 0,01 до 1,6 Тл. Основная погрешность прибора не превышает ±2 %.

Каждый измерительный преобразователь рассчитывается для вполне определенных пределов изменения входного сигнала. При этом получаются определенные значения пределов изменения выходного сигнала. Отношение изменения сигнала на выходе преобразователя к вызывающему его изменению сигнала на входе преобразователя называется коэффициентом преобразования измерительного преобразователя. Очевидно, что это определение справедливо лишь для преобразователей с линейной функцией преобразования. При нелинейной функции коэффициент преобразования не является постоянной величиной и может быть определен в какой-либо точке градуировочной характеристики как производная от выходного сигнала по входному сигналу. Коэффициент преобразования преобразователя обычно указывается при нормальных условиях его применения.

Структурные методы коррекции по способу введения корректирующего воздействия .разделяют на аддитивные и мультипликативные. При аддитивной коррекции величина, пропорциональная погрешности, обычно суммируется с выходной величиной. Мультипликативная коррекция осуществляется изменением коэффициента преобразования преобразователя корректирующей величиной, пропорциональной погрешности. Управление коррекцией погрешностей осуществляется схемами е микропроцессорами.

На 5.8 изображена функциональная схема электронного вольтметра СВЗ. Измеряемое напряжение поступает на входное устройство, которое обеспечивает высокое входное сопротивление вольтметра и расширение пределов измерения. Затем напряжение подается на вход широкополосного усилителя А1 и после усиления — на преобразователь переменного напряжения в постоянное. Схема охвачена глубокой отрицательной обратной связью, напряжение обратной связи снимается с резистора КЗ и подается на вход усилителя А1. Благодаря обратной связи исключается влияние диодов на коэффициент преобразования преобразователя переменного напряжения в постоянное. Кроме того, улучшаются характеристики усилителя: уменьшается его нестабильность и нелинейность амплитудной характеристики. В диагональ диодного моста включен магнитоэлектрический прибор, показания которого соответствует СВЗ входного напряжения.

Нормативными документами (стандартами, техническими условиями и др.) устанавливаются нормальные условия эксплуатации средств измерений в отношении так называемых влияющих величин, т. е. таких величин (исключая измеряемую), под действием которых изменяются действительное значение меры, показание прибора или уравнение преобразования преобразователя. Среди влияющих величин наиболее общими являются температура, магнитное поле, влажность, частота переменного тока.

Из уравнения равновесия сил, действующих на носители тока, можно получить уравнение преобразования преобразователя для режима заданного тока в следующем виде:

При постоянном токе / из выражения (12.5) получается уравнение преобразования преобразователя:

Каждый измерительный, преобразователь рассчитывается для вполне определенных пределов изменения входного сигнала. При этом получаются определенные значения пределов изменения выходного сигнала. Отношение изменения сигнала на выходе преобразователя к вызывающему его изменению сигнала на входе преобразователя называется коэффициентом преобразования измерительного преобразователя. Очевидно, что это определение справедливо лишь для преобразователей с линейной характеристикой. При нелинейной характеристике коэффициент преобразования не является постоянной величиной и может быть определен в какой-либо точке градуиро-вочной характеристики как производная от выходного сигнала по входному сигналу. Коэффициент преобразования преобразователя' обычно указывается при нормальных условиях его применения. Отступление от нормальных условий работы преобразователя (изменение окружающей температуры, напряжения вспомогательного источника питания и т. д.) может вызвать изменение коэффициента преобразования, что приводит к появлению дополнительных погрешностей преобразователя. В зависимости от пределов допускаемых основной и дополнительных погрешностей преобразователи делятся на классы точности, указываемые в соответствующих стандартах.

Электрорадиоэлемент (ЭРЭ) — прибор или устройство, выполняющее функции преобразования, распределения, переключения электрических сигналов, реализуемых электрической схемой. К ЭРЭ следует относить: резисторы, конденсаторы, диоды, транзисторы, микросхемы, трансформаторы, реле, переключатели, тумблеры, кнопки, предохранители и др.

а также выражение для z-преобразования распределения длины очереди в рассматриваемой системе:

где gm(z) — k-я производная по p~\=z от z-преобразования распределения g(tis) интервалов обслуживания. Решая затем вектор-но-матричное уравнение (2.5'"), находим компоненты вектора финальных вероятностей PT = \PQ, pi,... ,pq,... ,pN]. Вероятность потерь определяется так:

оперативного управления процессами производства, преобразования, распределения и конечного использования электроэнергии;

Под энергетикой, или энергетической системой, следует понимать совокупность больших естественных (природных) и искусственных (созданных человеком) систем, предназначенных для получения, преобразования, распределения и использования в народном хозяйстве энергетических ресурсов всех видов*. На В.1 показана такая совокупность систем, их прямые (сплошные линии) и обратные (штриховые линии) связи. При этом подчеркивается системный подход к энергетике, т. е. она рас-

Под энергетикой, или энергетической системой, следует понимать совокупность больших естественных (природных) и искусственных (созданных человеком) систем, предназначенных для получения, преобразования, распределения и использования в народном хозяйстве энергетических ресурсов всех видов*. На В.1 показана такая совокупность систем, их прямые и обратные (штриховая линия) связи. На этом рисунке и в приведенном выше определении подчеркивается системный подход к энергетике,

Энергосберегающая политика как комплекс мер по коренному улучшению использования энергоресурсов в народном хозяйстве имеет три основных аспекта: 1) сокращение расхода конечной энергии на удовлетворение нужд общества; 2) повышение коэффициента полезного использования энергоресурсов путем совершенствования всего аппарата добычи (производства) преобразования, распределения и использования энергетических ресурсов; 3) замещение дорогих и ограниченных видов топлива более дешевыми и доступными источниками энергии, прежде всего ядерной энергией и возобновляемыми энергоресурсами.

Отрасль науки и техники, занимающаяся вопросами производства, преобразования, распределения и применения электрической энергии, называется электротехникой.

Учет электроэнергии предназначен для получения информации о параметрах электропотребления. Информация необходима для: расчетов предприятия с энергоснабжающей организацией; контроля соответствия фактических значений параметров электропотребления ожидаемым (планируемым); оперативного управления процессами производства, преобразования, распределения и конечного использования энергии; разработки обоснованных удельных норм расхода электроэнергии; составления электробалансов предприятий, производств, цехов, агрегатов и определения фактического использования электроэнергии; планирования и прогнозирования параметров электропотребления предприятий и отдельных его подразделений; организации системы поощрения.

Электроустановки — совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, распределения и потребления электроэнергии. Подразделяются на электроустановки напряжением до 1 кВ и выше.

Электроснабжение электроприемников — это совокупность электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии.



Похожие определения:
Пропорционально уменьшению
Пропорционален напряжению
Пропускает постоянную
Пропускные способности
Преобразователях используются
Простейшего стабилизатора
Простейших составляющих

Яндекс.Метрика