Возбуждения уравнение

Из-за снижения ЭДС напряжение генератора параллельного возбуждения уменьшается при увеличении нагрузки в большей степени, чем у генератора независимого возбуждения. Это является одним из его недостатков. Обычно

между вьшодами генератора при увеличении тока якоря вызывается двумя причинами: увеличением падения напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья — уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цени генератора (пологой части магнитной характеристики) „ уменьшение ЭДС якоря относительно меньше уменьшения тока возбуждения ( 13.29). В таких условиях при уменьшении сопротивления цепи нагрузки ток якоря возрастает. Но условия резко изменяются, если в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения приводит к пропорциональному уменьшению потока и ЭДС якоря ( 13.29), что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое снижение ЭДС и т. д. Имеет место своеобразное саморазмагничивание генератора, заканчивающееся тем, что при коротком замыкании якоря сохраняется только остаточная намагниченность, поддерживающая ограниченный (меньше номинального) ток короткого замыкания.

Если считать магнитный поток Ф неизменным, то согласно (13.9) естественная механическая характеристика двигателя с параллельным возбуждением п(МВ ) изображается прямой линией, слегка наклоненной в сторону оси абсцисс ( 13.37). При изменении нагрузки на валу двигателя от холостого хода до номинальной частоты вращения большинства двигателей параллельного возбуждения уменьшается лишь на 3—8% (тем меньше, чем больше номинальная мощность двигателя). Таким образом, естественную механическую характеристику двигателей с параллельным возбуждением следует считать жесткой.

Для регулирования частоты вращения можно шунтировать обмотку возбуждения реостатом с регулируемым сопротивлением/- ( 13.43, ключ К замкнут) . При шунтировании обмотки возбуждения уменьшается магнитный поток Ф и возрастает согласно (13.10) частота вращения п. Одновременно увеличивается ток двигателя.

между выводами генератора при увеличении тока якоря вызывается двумя причинами: увеличением падения напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья — уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цепи генератора (пологой части магнитной характеристики) уменьшение ЭДС якоря относительно меньше уменьшения тока возбуждения ( 13.29). В таких условиях при уменьшении сопротивления цени нагрузки ток якоря возрастает. Но условия резко изменяются, если в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения приводит к пропорциональному уменьшению потока и ЭДС якоря ( 13.29), что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое снижение ЭДС и т. д. Имеет место своеобразное салюразмагничивание генератора, заканчивающееся тем, что при коротком замыкании якоря сохраняется только остаточная намагниченность, поддерживающая ограниченный (меньше номинального) ток короткого замыкания.

Если считать магнитный поток Ф неизменным, то согласно (13.9) естественная механическая характеристика двигателя с параллельным возбуждением п(М ) изображается прямой линией, слегка наклоненной в сторону оси абсцисс ( 13.37) . При изменении нагрузки на валу двигателя от холостого хода до номинальной частоты вращения большинства двигателей параллельного возбуждения уменьшается лишь на 3-8% (тем меньше, чем больше номинальная мощность двигателя). Таким образом, естественную механическую характеристику двигателей с параллельным возбуждением следует считать жесткой.

Для регулирования частоты вращения можно шунтировать обмотку возбуждения реостатом с регулируемым сопротивлением г ( 13.43, ключ К замкнут). При шунтировании обмотки возбуждения уменьшается магнитный поток» Ф и возрастает согласно (13.10) частота вращения п. Одновременно увеличивается ток двигателя.

между выводами генератора при увеличении тока якоря вызывается двумя причинами: увеличением падения напряжения на активном сопротивлении якоря и реакцией якоря. При параллельном возбуждении к этим двум причинам добавляется третья - уменьшение тока возбуждения. Пока этот ток соответствует условиям насыщения магнитной цепи генератора (пологой части магнитной характеристики) v уменьшение ЭДС якоря относительно меньше уменьшения тока возбуждения ( 13.29). В таких условиях при уменьшении сопротивления цепи нагрузки ток якоря возрастает. Но условия резко изменяются, если в результате увеличения тока якоря и вызванного этим понижения напряжения ток возбуждения уменьшается настолько, что магнитная цепь генератора оказывается в ненасыщенном состоянии. В условиях линейной части магнитной характеристики уменьшение тока возбуждения приводит к пропорциональному уменьшению потока и ЭДС якоря ( 13.29), что вызывает дальнейшее уменьшение тока возбуждения, а это в свою очередь обусловливает новое снижение ЭДС и т. д. Имеет место своеобразное саморазмагничивание генератора, заканчивающееся тем, что при коротком замыкании якоря сохраняется только остаточная намагниченность, поддерживающая ограниченный (меньше номинального) ток короткого замыкания.

Если считать магнитный поток Ф неизменным, то согласно (13.9) естественная механическая характеристика двигателя с параллельным возбуждением п(М ) изображается прямой линией, слегка наклоненной в сторону оси абсцисс ( 13.37). При изменении нагрузки на валу двигателя от холостого хода до номинальной частоты вращения большинства двигателей параллельного возбуждения уменьшается лишь на 3—8% (тем меньше, чем больше номинальная мощность двигателя). Таким образом, естественную механическую характеристику двигателей с параллельным возбуждением следует считать жесткой.

• Для регулирования частоты вращения можно шунтировать обмотку возбуждения реостатом с регулируемым сопротивлением г ( 13.43, ключ К замкнут) . При шунтировании обмотки возбуждения уменьшается магнитный поток Ф и возрастает согласно (13.10) частота вращения п. Одновременно увеличивается ток двигателя.

Процесс возбуждения будет продолжаться до точки N ( 14-18) пересечения характеристики холостого хода Е --- / (/„) с прямой ^в (r« + rw + ГР}- При увеличении сопротивления цепи возбуждения уменьшается значение напряжения, устанавливающегося на зажимах генератора. Это уменьшение может происходить только до точки а, когда линейная зависимость между напряжением на зажимах цепи возбуждения и током в ней совпадает с начальным участком характеристики холостого хода. Дальнейшее небольшое увеличение сопротивления гр приведет к резкому снижению напряжения практически до значения ?„. Сопротивление регулировочного реостата, соответствующее этому случаю, называется критическим и определяется формулой

Уравнение (13.10) показывает, что частота вращения п обратно пропорциональна главному магнитному потоку Ф, а этот поток, пока магнитная цепь машины не насыщена, можно считать пропорциональным току возбуждения / Следовательно, частоту вращения двигателя можно регулировать изменением тока возбуждения, для чего в' цепь возбуждения вводится реостат гщ. Зависимость и(/в) - гипербола - показана на 13.39.

Уравнение (13.10) показывает, что частота вращения п обратно пропорциональна главному магнитному потоку Ф, а этот поток, пока магнитная цепь машины не насыщена, можно считать пропорциональным току возбуждения ^.Следовательно, частоту вращения двигателя можно регулировать изменением тока возбуждения, для чего в' цепь возбуждения вводится реостат г . Зависимость п(1 ) - гипербола - показана на 13.39.

Уравнение (13.10) показывает, что частота вращения п обратно пропорциональна главному магнитному потоку Ф, а этот поток, пока магнитная цепь машины не насыщена, можно считать пропорциональным току возбуждения /в. Следовательно, частоту вращения двигателя можно регулировать изменением тока возбуждения, для чего в цепь возбуждения вводится реостат г . Зависимость и(/в) — гипербола - показана на 13.39.

Уравнение (2.23) представляет собой обобщенное уравнение цепи обмотки возбуждения, в котором значения R и р зависят от способа гашения поля. При разряде обмотки возбуждения на постоянное активное сопротивление р = О, R = 5; при противо-включении возбудителя без форсировки возбуждения, но с включением активного сопротивления р = — 1, /? = 4; при гашении разрядом на карборундовое сопротивление, постоянные материалы которого равны п = 3, Вк = 5, имеем Р = 0; R = 5ui~2/3; при разряде на дугогасительную решетку АГП р = — 5, R = О, т. е. действие дугогасительной решетки эквивалентно введению в цепь обмотки ЭДС противоположного знака, равной падению напряжения на ней.

Уравнение, описывающее внешнюю характеристику генератора постоянного тока с параллельным возбуждением U (/), т. е. зависимость напряжения на его зажимах от тока нагрузки при постоянном сопротивлении цепи обмотки возбуждения #Р = const и постоянной частоте вращения якоря п = пно« = const, равной номинальной, можно получить исходя из уравнения электрического равновесия, составленного по второму закону Кирхгофа • для цепи якоря: U = Е — /?я/. Пренебрегая относительно небольшим значением тока возбуждения /„, можно считать, что / = /,.

Уравнение внешней характеристики генератора с последовательным возбуждением в соответствии со вторым законом Кирхгофа имеет вид: U = ? — l,(R« + /?„), где R, — сопротивление обмотки последовательного возбуждения.

Уравнение (6.1) отличается от уравнения напряжения двигателя постоянного тока последовательного /возбуждения наличием члена jx/.

У электродвигателей параллельного возбуждения ( 21.11, а), снабженных дополнительными полюсами и компенсационной обмоткой (дополнительные полюсы имеют почти все машины постоянного тока мощностью более 1 кВт, а компенсационную обмотку — многие машины средней и большой мощности), магнитный поток можно считать не зависящим от тока якоря. Поэтому при неизменном токе возбуждения уравнение механической характеристики таких электродвигателей имеет простой вид

5. Возможные способы регулирования частоты вращения якоря ДПТ параллельного возбуждения. Уравнение механической характеристики п = /(М).

Уравнение механической характеристики двигателя последовательного возбуждения, схема включения которого приведена на 2-13,а, может быть получено из следующего соотношения:



Похожие определения:
Возможных перенапряжений
Возможных значениях
Возможным значениям
Возможное отклонение
Возможностью измерения
Возможность автоматического
Возможность формирования

Яндекс.Метрика